
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2002; 40:231–240 (DOI: 10.1002/�d.273)

An optimal control approach to optical �ow computation
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SUMMARY

An optimal control approach for determining optical �ow is presented. The new framework di�ers
from preceding approaches in that it does not require di�erentiation of the data. A numerical algorithm
that solves the optimality system consisting of hyperbolic and elliptic partial di�erential equations is
presented. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

An optical �ow is the �eld of apparent velocities in a sequence of images. From this �ow,
information about the spatial arrangement of objects and the rate of change of this arrange-
ment ought to be obtained. One assumes that objects represented in the image are �at surfaces,
that they are uniformly illuminated, and that re�ectance varies smoothly and has no spatial
discontinuities [1]. Under these assumptions, the image brightness of an object point remains
constant in the images when the object moves. That is, the total time derivative of the bright-
ness at each point (x; y) at time t is zero:
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where I = I(x; y; t) denotes the image brightness at (x; y) and t, and w=(u; v) represents the
optical �ow vector. Equation (1) is referred to as the optical �ow constraint (OFC). For a
derivation of the model we refer to References [1; 2].
Given a sampled sequence of image frames {Yk}Nk=1, at times tk , most techniques for

optical �ow calculations �rst approximate the spatio-temporal derivatives, (Ix; Iy; It), and aim at
solving (1) for w. Equation (1) can only be solved uniquely with the addition of an auxiliary
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constraint or regularization term. The novelty of our formulation is given by the fact that the
image frames Yk and the corresponding variable I in mathematical model (1) for the optical
�ow are separate quantities. Consequently, the optimal control formulation does not require
di�erentiation of the data and we distinguish between the sampling rate of the images and
the time discretizing of I in the numerical realization of our algorithm.
To solve the optimal control problem, we derive the associated �rst-order optimality condi-

tions. These result in a system of two forward–backward hyperbolic equations and two elliptic
equations together with appropriate initial and boundary conditions. We solve the optimality
system by combining a second-order explicit TVD scheme and a second-order multigrid
method in a segregated loop algorithm. Results of numerical experiments with synthetic and
real image sequences demonstrate the ability of the optimal control formulation to determine
optical �ow from two or more image frames.

2. OPTIMAL CONTROL FRAMEWORK FOR OPTICAL FLOW

In this section we formulate an optimal control problem for optical �ow. Consider a sequence
of image frames {Yk}Nk=1 sampled at increasing time steps, tk =(k − 1)DT; k=1; 2; : : : ; N ,
where t1 = 0 and tN =T . Here, a uniform sampling rate is assumed and set equal to one,
DT =1. Each frame is assumed to be de�ned on a rectangle which de�nes the spatial domain
�. The space–time box in which the optical �ow takes place is �× [0; T ]. We de�ne the
following constrained minimization problem: Find w and I such that

It + w · ∇I =0 in Q=�× (0; T ]
I(·; 0) = Y1

(2)

and minimize the cost functional

J (I;w) =
1
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Here, �; �, and � are prede�ned non-negative weights. The �rst term in J is the least-squares
term requiring that w is chosen such that I(·; tk ;w) approximates Yk at the sampling times.
The second and third terms are regularization terms which are necessitated by the fact that
the determination of a temporally and spatially varying vector �eld w from the data is under
determined. These regularization terms are analogously used in References [1; 3]. They are
motivated by the assumption that w is smooth with respect to t and the spatial variables
x and y. We introduce the last term in order to enforce the �lling-in property [2]. That is,
consider the case that all velocities on the border of a small subregion are the same. The
points in the interior of the subregion should be assigned the same value too. A way of
expressing this property is to penalize by

∫
Q |∇ ·w|2 dq.
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We use the method of Lagrange multipliers [4] to turn the constrained minimization problem
de�ned above into an unconstrained one and we focus on the necessary optimality conditions
of �rst order. This results in the optimality system:

It + w · ∇I =0 with I(·; 0)=Y1 (3)

pt +∇ · (wp)=
N−1∑
k=2
[�(t − tk)(I(·; tk)− Yk)] with p(·; T )=−(I(·; T )− YN ) (4)
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where � denotes the Dirac �-function. The interpretation of (4) is

pt +∇ · (wp)=0 on t ∈ (tk−1; tk) for k=2; : : : ; N (7)

p(·; t+k )− p(·; t−k )= I(·; tk)− Yk for k=2; : : : ; N − 1 (8)

Note that while the optical �ow constraint equation is marching forward in time, the adjoint
optical �ow equation is marching backward. The last two elliptic equations are referred to as
the optimality condition.
Concerning boundary conditions for w, we consider cases where no objects are traversing

the boundaries of the image frame, thus we restrict the admissible optical �ow �elds to satisfy
homogeneous Dirichlet boundary conditions on the spatial boundary and natural boundary
conditions at the temporal boundaries of Q, i.e.

w=0 on @�; for t ∈ [0; T ]; @w
@t
=0 for t=0 and t=T; in � (9)

In case the image does not satisfy homogeneous Dirichlet boundary conditions, it can be
enlarged by assigning the value zero within a strip along the boundary. Other choices of
boundary conditions are possible; see, e.g. Reference [2]. Our choice of the boundary condi-
tions at t=0 and at t=T is the same as in Reference [3].

3. THE METHOD OF HORN & SCHUNCK

The method of Horn and Schunck [1] aims at computing optical �ow velocity from spatio-
temporal derivatives of image brightness. Though this scheme was one of the �rst methods
for determining optical �ow, it is still competitive and is one of the most used methods
both in its original form or with various modi�cations; see References [1–3; 5]. This method
combines optical �ow constraint (1) with a global smoothness term de�ning a unconstrained
minimization problem; minimizing∫

Q
[(It + w · ∇I)2 + �2(|∇u|2 + |∇v|2)] dq (10)

In the original formulation [1] all quantities in (10) are considered to be de�ned at an
intermediate time step (DT=2) between two sampled images from which the spatio-temporal
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derivatives (Ix; Iy; It), where I equals Y , are obtained by numerical di�erentiation. A minimum
of (10) necessarily satis�es the Euler equations:

�2�u− Ix(It + uIx + vIy)=0 (11)

�2�v− Iy(It + uIx + vIy)=0 (12)

where � is the Laplace operator and homogeneous Dirichlet boundary conditions (9) are
used. The choice of the regularization parameter � speci�es the degree of smoothness of the
solution. We shall take �=0:5 as suggested in Reference [2] for good results.
To solve Euler equations (11) and (12), one usually discretizes � by a nine-point star

discrete Laplace operator and (It ; Ix; Iy) are replaced by centred �nite di�erences; see Refer-
ences [1–3]. The resulting discrete Euler equations are solved by a block-Gauss–Seidel
iteration.
In using (11) and (12), an accurate computation of the spatio-temporal derivatives is

necessary to obtain reliable results. Accuracy is not su	cient; in fact in Reference [5],
examples are given where the use of accurate discretization schemes for di�erentiation provide
wrong results unless the velocity of the pattern (i.e. w) is close to the ratio of the spatial to
the temporal sampling, that is, u≈DX=DT and v≈DY=DT . This may be related to the fact
that in order to solve numerically optical �ow equation (1), the following CFL-like condition
must be satis�ed:

�6
CCFL

max(|u|max=h; |v|max=h) (13)

Here � is the time step size, h the spatial mesh size, and 0¡CCFL61 is the CFL number.
The discussion above outlines a limitation of the Horn & Schunck scheme which is not

present in our approach, since the time discretization for the numerical realization of (3)–(6)
and the sampling times for the images are independent.

4. NUMERICAL ALGORITHM

The numerical solution of the optimality system presents di	culties due to the presence of two
coupled subsystems with di�erent characters. Experience from computational �uid dynamics
has shown that an e	cient solution process can be obtained by using two di�erent types of
solvers for the two subsystems, each designed to solve one of the two blocks accurately and
e	ciently. E	cient and accurate methods to solve the optical �ow constraint equation and the
adjoint equation are given by explicit high-order TVD schemes [6]. An e	cient and accurate
solution of the elliptic control system is obtained by using the FAS multigrid method [7].
The coupling between the hyperbolic and the elliptic subsystems is obtained by repeated
application of a segregation loop as follows:
Segregation loop for solving the optimal control problem (3)–(6).

1. Apply the Horn & Schunck method for a starting approximation to w.
2. Solve the optical �ow constraint equation to obtain I .
3. Solve (backward) the adjoint optical �ow constraint equation to obtain p.
4. Update the right-hand sides of the elliptic system.
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5. Apply a few V -cycles of multigrid to solve the control equations.
6. Go to 2 and repeat Iloop times.

We next discuss steps 2–5 of the segregation loop in some detail. Consider a space–time
grid denoted by Qh; �=�h ⊗
�. We follow the standard procedure and normalize the distance
between pixels to one. Thus the spatial discretization is linked to the availability of pixel
information by setting the space mesh size h=DX =DY =1. The grid spacing in the time
direction is denoted by � and is de�ned as a fraction of DT =1. A mesh point in Qh; � is
represented by three indices (i; j; �); i; j=1; 2; : : : ; L, and �=1; 2; : : : ; K .
We implement an explicit second-order upwind TVD scheme with the ‘Superbee’ limiter

of Roe for step 2; see Reference [6] for the details. We have chosen Superbee based on
our numerical experience. We use �xed time steps for an easy (grid) coupling with the
other equations of the optimality system. The CFL bound is taken equal to CCFL =0:5. The
adjoint equation is solved by the same method as described for step 2 by reversing time. To
numerically realize the delta impulses in the sense of (8) we use a splitting technique at tk ,
i.e. we have

p(·; t�)=p(·; t+� )− (I(·; tk)− Yk) for t�+1 = tk ; k=2; : : : ; N − 1
to compute p(·; t�). Here p(·; t+� ) is obtained by solving (7) (backwards) for one time step
with initial condition p(·; t�+1).
In the segregation loop, we solve for I and store its value at each time step. Then, we

solve for the adjoint variable p and set up and store p∇I at each time step, that is, the source
term of the control equations. To calculate the derivatives with respect to space of the image
function, we use a centred �ve-point formula. Tests with three-point formulae gave similar
results.
The system of the two elliptic equations arising in the optimal control framework is

discretized by �nite di�erence methods. Consider the elliptic equation for uh:

�
uh
i; j; �+1 − 2uh

i; j; � + uh
i; j; �−1

�2
+ �{�huh}i; j; � + �

uh
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i; j; � + uh
i−1; j; �

h2

=
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p
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@x

]
i; j; �

− �
vhi+1; j+1; � − vhi+1; j−1; � − vhi−1; j+1; � + vhi−1; j−1; �

4h2
(14)

where i; j=2; : : : ; L − 1, and �=2; : : : ; K − 1. Here we continue to use h for easier reading
of the formulae, although h=1. Further �=T=K is chosen such that CFL condition (13) is
satis�ed. We discretize the second term of (14) by the usual �ve-point di�erence Laplacian.
The last term of Equation (14) represents a second-order accurate discretization of �@2v=@x@y.
In a similar fashion we obtain the discretization of the elliptic equation for the vh component
of the optical �ow. The boundary conditions are given by uh

�= vh�=0 on @�h; �=1; 2; : : : ; K .
The Neumann boundary conditions at t=0 and t=T for uh and vh are discretized by �rst-
order di�erences.
In order to solve e	ciently the space–time elliptic system for (u; v) we implement the full

approximation scheme (FAS) multigrid method of Brandt [7]. This method results in a solu-
tion process with optimal computational and storage complexity. In the case of Equation (14)
(and the one corresponding to the v variable) a strong anisotropy in the coe	cients of the
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problem is present when �� h. For this reason t-line relaxation based on the Thomas algo-
rithm [6] is used as smoother in the multigrid process. The Neumann boundary conditions
are then enforced to update the variable values at the Neumann boundaries. For the multigrid
coarse grid correction process, in order to transfer the residuals on coarser grids, a half-
weighted restriction is used, whereas the solution on coarser grids is transferred using the
simple injection. For the prolongation, we use the trilinear interpolation operator.
Convergence of the iterative procedure forming the segregation loop (Steps 2–6) is an

independent issue which is investigated elsewhere.

5. NUMERICAL EXPERIMENTS

In the optical �ow community, an angular measure of error is used to measure optical �ow
accuracy. One considers the pattern displacement as a space–time direction vector w=(u; v; 1)
in units of (pixel,pixel,frame). The corresponding three-dimensional direction vector is denoted
by ŵ = w=|w|. The space–time orientation error between the correct velocity wc and an
estimate we is given by  E = arccos(ŵc · ŵe) [1]. We denote by  E

i; j; �=arccos(ŵ
c
i; j; � · ŵei; j; �)

the error function  E evaluated at grid point (i; j; �). This measure of the optical �ow error
is made global by considering the mean orientation error

 ̃ =
1

KL2
K∑

�=1

L∑
i; j=1

 E
i; j; �

at the space–time mesh points of the evolving images. On this set of points, we also compute
the maximum modulus of the functions u and v denoted by |u|max and |v|max, respectively, to
establish the accuracy of the optical �ow with respect to the maximal velocity. In the tables
we also report the tracking error, denoted by ‖I − Y ‖2, and de�ned by

K∑
�=1

L∑
i; j=1

(I tki; j − Y (xi; yj; tk))2 (15)

Finally, in order to validate the divergence term in the cost functional, we also report the
value of the discrete version of the divergence term.
Note that because we work in terms of pixels, the value of the tracking errors and costs

may appear to be excessively large. Normalized values are obtained by dividing the reported
values by their respective volumes.

5.1. Experiments with sequences of synthetic images

A standard test for optical �ow solvers with synthetic images is given by a square moving
with velocity (uc; vc). At time t, the frames are de�ned by means of the following function:

I(x; y; t)=

{
1 xlt6x6xrt and ylt6y6yut

0 otherwise
(16)

where xlt and xrt are the x-co-ordinates of the left and right vertical edges of the square,
respectively, and ylt and yut are the y-co-ordinates of the lower and upper horizontal edges of
the square, respectively.
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Table I. Moving square: (uc; vc) = (1:5; 2). Dependence on � and �.

Dependence on �; �=0:25, and �=0:1

� |u|max ; |v|max � ‖I − Y‖2 ‖div(w)‖2

1 2.78, 3.10 13.58 333.1 13.5
5 1.70, 2.15 14.21 68.0 3.8
10 1.71, 2.12 15.31 90.4 4.1

Dependence on �; �=5:0, and �=0:25

� |u|max ; |v|max � ‖I − Y‖2 ‖div(w)‖2

0 1.74, 2.19 14.81 65.5 0
0.25 1.67, 2.10 13.5 71.9 3.2
0.5 1.64, 2.04 12.54 78.4 2.6
1 1.61, 1.99 11.21 91.0 2.1
H & S 2.49, 2.51 19.09

We consider a translating square on a sequence of �ve frames of 64× 64 (L=64) pix-
els and N =5 and T =4 with K =64 time sub-intervals of size �=T=64. That is, every
lt =16 steps, a new image frame is given. In the multigrid solver �ve levels are
used. The coarsest grid is a 4× 4× 4 space–time grid, re�ned by halving the mesh
size.
We take (uc; vc)= (1:5; 2) and the images of the square are given by (16) with xlt = x0 +

uct; xrt = x0 + uct + 20; ylt =y0 + vct, and yut =y0 + vct + 20, where (x0; y0)= (20; 20). No-
tice that the modulus of the optical �ow velocity is such that the CFL condition (i.e. (13)
with � replaced by DT =1 and h=DX =DY =1) is not satis�ed by the given image
sequence. However, (13) is satis�ed with � utilized for the optimal control
scheme.
Results of our experiments are reported in Table I where one can observe that the solution

obtained with our method di�ers considerably from that obtained with the Horn & Schunck
scheme. In fact, the optimal control solution is a good approximation to the two di�erent
velocity components while the components of the Horn & Schunck solution are too large and
almost equal to each other. Compare the values in bold fonts with the last line in Table I.
We show the ability of our approach to determine the optical �ow also in the case where
only two image frames are given. This case is encountered in the �eld of image registra-
tion; see Reference [8]. We use the same discretization setting as in the previous case, with
N =2; T =1, and �= 1

64 . Control applies through the �nal observation, YN , and the tracking
error measures the error on the �nal observation, ‖I(·; T ) − YN‖2. The translating square as
de�ned above is used. Results for this case are reported in Table II. Here, because of the
absence of tracking information for intermediate time steps, a bigger role is played by the
second-order time derivative term of the control functions in the cost functional. A larger
value of � results in a reduction of the tracking error at the cost of larger errors in the optical
�ow estimate: An over-regularization e�ect occurs. For this reason, best results are obtained if
the value of � is kept smaller than in the multiple frames cases and larger values of � and �
are chosen. To conclude this section let us observe that in all experiments the optimal control
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Table II. Two sample images: (uc; vc) = (1:5; 2). Dependence on � and �.

Dependence on �; �=0:25, and �=0:1

� |u|max ; |v|max � ‖I − Y‖2 ‖div(w)‖2

0.5 1.79, 2.33 23.02 11.2 6:0(−1)
1 1.97, 2.55 24.07 10.4 1.3
5 2.32, 2.55 26.43 25.9 3.1

Dependence on �; �=1:0, and �=0:25

� |u|max ; |v|max � ‖I − Y‖2 ‖div(w)‖2

0 2.06, 2.58 24.61 9.5 0
0.5 1.74, 2.34 22.55 12.8 7:6(−1)
1 1.59, 2.11 21.33 14.8 5:0(−1)
2 1.48, 1.85 19.83 18.9 3:2(−1)
H & S 2.46, 2.47 27.10

algorithm attains a substantial reduction of the tracking error within ten loops. With Iloop = 10,
in all cases, a reduction of at least three orders of magnitude of the discrete L2 norms of
the residuals of all equations of the optimality system occurs. Further steps of the segrega-
tion loop results in a smaller improvement of the tracking error and of the estimate of the
optical �ow.

5.2. Experiments with sequences of real images: the taxi sequence

A known benchmark for veri�cation of optical �ow solvers is the ‘Hamburg Taxi Sequence’;
see Reference [2]. It consists of a sequence of frames of a taxi coming from the right in
the main road and turning right into a side street in Hamburg (Germany). One photo of
the sequence and the corresponding brightness pattern are depicted in Figure 1. We consider
a sequence of (the �rst) �ve photos of the moving taxi taken at regular intervals (T =4).
The space–time computational domain is a 128× 96× 128 grid, where 128 time subdivisions
are taken in the time direction. This grid can be obtained from a coarse 4× 3× 4 mesh by
halving the mesh size 6 times. Our algorithm is applied with �=5:0; �=0:25; �=0:25, and
Iloop = 10. In Figure 1 the optical �ow computed with the optimal control approach at t=2
is presented. Comparing with the solution obtained with the Horn & Schunck method, our
approach provides a smoother and more uniform optical �ow for the taxi sequence. Moreover,
the incompressibility term

∫
Q |∇ ·w|2 dq leads to improved �lling-in features.

6. CONCLUSIONS

We presented a new approach to optical �ow computation that is based on an optimal con-
trol framework. Speci�c features of the method are that it does not require di�erentiation of
the data and that the sampling time of the image frames and the time discretization of the
optical �ow equation are separate. We solved the optimality system by means of a segregation
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Figure 1. First frame of the taxi sequence (top left); the corresponding brightness distribution (top
right). Optical �ow for the taxi sequence (bottom left). Close-ups of the solution containing the region

of the taxi (bottom right).

loop algorithm involving an explicit second-order TVD upwind scheme and the FAS
multigrid method.
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